1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
pub trait Monoid {
type T: Clone;
fn identity_element() -> Self::T;
fn binary_operation(a: &Self::T, b: &Self::T) -> Self::T;
}
pub struct Add {}
impl Monoid for Add {
type T = i64;
#[inline]
fn identity_element() -> Self::T {
0_i64
}
#[inline]
fn binary_operation(a: &Self::T, b: &Self::T) -> Self::T {
*a + *b
}
}
#[derive(Clone, Debug)]
pub struct FenwickTree<M>
where
M: Monoid,
{
array: Vec<M::T>,
}
impl<M> FenwickTree<M>
where
M: Monoid,
{
#[inline]
pub fn new(size: usize) -> FenwickTree<M> {
Self {
array: vec![M::identity_element(); size + 1],
}
}
#[inline]
pub fn operate(&mut self, index: usize, x: M::T) {
let mut i = index + 1;
while i < self.array.len() {
self.array[i] = M::binary_operation(&self.array[i], &x);
i += i & i.wrapping_neg();
}
}
#[inline]
pub fn fold(&self, end: usize) -> M::T {
let mut s = M::identity_element();
let mut i = end;
while i > 0 {
s = M::binary_operation(&s, &self.array[i]);
i -= i & i.wrapping_neg();
}
s
}
}
#[cfg(test)]
mod tests {
use super::*;
#[test]
fn test_sum() {
let mut a = FenwickTree::<Add>::new(100);
(0..100).for_each(|i| a.operate(i, i as i64 + 1));
(0..100).for_each(|i| assert_eq!((1..=i).sum::<i64>(), a.fold(i as usize)));
}
pub struct Xor {}
impl Monoid for Xor {
type T = u64;
#[inline]
fn identity_element() -> Self::T {
0_u64
}
#[inline]
fn binary_operation(a: &Self::T, b: &Self::T) -> Self::T {
*a ^ *b
}
}
#[test]
fn test_xor() {
let a = vec![0, 5, 3, 4, 7, 0, 0, 0, 1, 0];
let txy_ans = vec![
(1, 10, 7, 0),
(2, 8, 9, 1),
(2, 3, 6, 0),
(2, 1, 6, 5),
(2, 1, 10, 3),
(1, 9, 4, 0),
(1, 6, 1, 0),
(1, 6, 3, 0),
(1, 1, 7, 0),
(2, 3, 5, 0),
];
let mut ft = FenwickTree::<Xor>::new(10);
for (i, &v) in a.iter().enumerate() {
ft.operate(i, v);
}
for (t, x, y, ans) in txy_ans {
if t == 1 {
ft.operate(x as usize - 1, y);
} else {
assert_eq!(ft.fold(y as usize) ^ ft.fold(x as usize - 1), ans);
}
}
}
}